摘要

针对GLAS地学激光测高系统是冰、云和陆地高程卫星(ICESat)的唯一监测工具,能够记录地表光斑内的地物信息,是否能应用于黄土高原土地覆盖分类的问题进行了研究。利用粒子群和最小二乘法相结合的方法对GLAS波形数据进行高斯分解,获取高斯波个数、波形总能量、波形信号起始和信号结束位置4个波形参数;基于波形自动分类方法对黄土高原水体、森林、城市用地、其他地类(裸地、低矮植被等)进行分类。通过基于覆盖相同研究区域的30 m地表覆盖数据(Globe Land30),验证分类的准确性。结果表明,GLAS大光斑波形数据对黄土高原的4种地类能够很好地进行区分,总分类精度高达87.68%,Kappa系数为65.79%。研究表明,GLAS波形数据可以作为获取土地覆盖信息的有效数据源,为研究黄土高原土地覆盖变化提供更丰富的数据支持。

全文