摘要

基于高分辨率遥感影像的建筑物提取一直是研究的热点问题,深度学习的深层次特征提取方法,非常适合高分辨率影像中建筑物的提取,但使用深度学习提取建筑物时,大多以改变网络结构为主进行算法优化,很少与其他方法结合。本文研究在改进深度学习网络结构的基础上,结合影像模糊度约束增强、形态学建筑指数约束增强等方法,对建筑物提取方法进行更全面更有针对性的改进。本文主要改进内容为:(1)提出PwDeepLab网络,该网络基于DeepLab v3+网络结构,在特征融合方式和损失函数等方面进行了改进。(2)提出模糊度约束方法,在固定影像块大小的情况下,通过影像模糊度约束对影像进行上采样增强。(3)提出形态学指数约束方法,通过形态学建筑物指数(MBI)约束范围拉伸增强的方法,在较少改变原始影像特征的情况下,突出建筑信息。本文在Massachusetts数据集和武汉大学的Satellite DatasetⅡ(East Asia)数据集上进行验证,2个数据集的主要建筑类型存在较大区别。本文提出的方法在2个数据集上的精度相对于DeepLab v3+分别提高了10.9%和3.8%,相对于U-Net分别提高了10.0%和9.6%。实验结果表明本文提出的方法对建筑物提取效果有明显提升,且具有很好的鲁棒性和通用性。