摘要
针对航班保障服务时间估计的问题,考虑到航班保障服务流程的特殊性、复杂性以及影响因素的不确定性,提出了一种基于贝叶斯网络(BN)的航班保障服务时间估计模型。该模型把航空领域的专家知识与历史数据的机器学习相结合,使用贝叶斯网络的增量学习特性动态地调整BN模型,使其适应新的变化,进而不断更新航班保障服务时间的估计值。使用国内某大型枢纽机场信息系统内提取的数据,通过期望最大化(EM)方法对模型进行训练,得到了测试结果。实验结果分析与模型评价表明,所提方法能有效估计航班保障服务时间且具有较高的准确度。敏感性分析表明,航班到达时段的航班密度对航班保障服务时间影响最强。
-
单位中国民航大学; 中国民航局第二研究所; 自动化学院