摘要
以识别玉米秧苗茎秆为目标,采用云台搭载电荷耦合器件(CCD)相机获得玉米秧苗图像,采用Label Image插件制作了玉米秧苗的标记与标签。基于深度学习框架Tensor Flow搭建了多尺度分层特征的卷积神经网络模型,应用4倍膨胀的单位卷积核,获得了玉米秧苗图像的识别模型,其识别准确率为99. 65%。将已知玉米秧苗图像划分为最佳子块,求取了各个子块的最佳二值化阈值。选取6种杂草密度在每天5个时间段进行为期3 d的试验,共采集了10 800幅图像。试验结果显示,对玉米秧苗茎秆的平均识别准确率为98. 93%,且光照条件与田间杂草密度对识别结果没有显著影响(P>0. 05)。
- 单位