摘要

边界条件的施加是求解偏微分方程定解问题的重要步骤。神经网络方法求解偏微分方程定解问题时,将原问题转化为对应的构造变分问题后,损失函数是包含控制方程与边界条件的泛函。采用经典罚函数法及其改进方法施加边界条件时,罚因子的取值直接影响计算精度和求解效率;直接采用Lagrange乘子法施加边界条件,计算结果可能偏离原问题最优解。为破解此局限性,使用广义乘子法施加边界条件。基于神经网络获得原问题的预测解,再使用广义乘子法构建神经网络的损失函数并计算损失值,利用梯度下降法进行参数寻优,判断损失值是否满足要求;不满足则更新罚因子与乘子后再进行求解直至损失满足要求。数值算例的计算结果表明:与采用经典罚函数法、L1精确罚函数法和Lagrange乘子法施加边界条件构造的神经网络相比,该文提出的方法具有更好的数值精度和更高的求解效率,且求解过程更加稳定。

全文