摘要
为了准确预测地铁列车碳滑板磨耗量,本文选择训练速度快、参数设置少、准确度高的极限学习机(ELM)模型。针对ELM模型在训练过程中随机产生权值和阈值,导致模型泛化能力不足、稳定性差等缺点,引入基于收缩因子改进的自适应粒子群算法(APSO)对其进行优化,提出了一种基于自适应粒子群优化极限学习机(APSO-ELM)的碳滑板磨耗预测模型。将该模型运用到碳滑板磨耗实例预测中,在选取的270组样本数据中,前235组作为训练样本,后35组作为测试样本,以影响碳滑板磨耗的主要因素——地铁运行公里数作为输入参数,以碳滑板厚度为输出参数,将预测结果与ELM模型预测进行对比。结果表明,APSO-ELM模型有较高的预测精度,预测值更逼近于实际值,验证了APSO-ELM模型在碳滑板磨耗预测中的可靠性和有效性。