摘要

基于学习模型的轴承剩余使用寿命(RUL)预测方法通常假设训练和测试数据具有相同的数据分布,为解决现有方法在不同工况或不同轴承RUL预测精度大幅下降的问题,提出一种基于对抗域自适应的轴承RUL预测方法。首先进行轴承健康阶段划分,使用等渗回归对振动数据进行预处理,平滑退化信号中的随机波动,再通过测量滑动窗口内的退化梯度进行健康阶段识别,表征退化趋势并识别跳跃点,从而划分健康阶段;在此基础上,选择源域和目标域的轴承退化阶段的振动数据作为模型输入,使用源域数据预训练特征提取器和寿命预测模块;然后设计域判别器网络对抗性地训练特征提取器,以最小化源域特征与目标域特征之间的分布差异;最后使用更新参数的目标特征提取器提取目标域的特征并进行RUL预测。使用IEEE PHM Challenge 2012轴承数据集验证了本文方法的有效性,与现有模型的对比试验表明本文方法在实现不同工况下轴承RUL预测迁移问题上表现更好。

  • 单位
    合肥工业大学; 上海航天控制技术研究所; 洛阳轴承研究所有限公司

全文