摘要

针对字符型数据和混合型数据的聚类方法进行了研究。首先在经典粗糙集理论的基础上,通过松弛对象之间的不可分辨和相容性条件,得到了基于和谐关系的扩展粗糙集模型;然后定义了新的个体间不可区分度、类间不可区分度、聚类结果的综合近似精度等概念,提出了新的混合数据类型层次聚类算法。该算法不仅能处理数值型数据,而且能处理大多数聚类算法不能处理的字符型数据和混合型数据。实验验证了算法的可行性。