摘要

针对深度信念网络在油井工况诊断中由于梯度扩散导致训练效果差,模型诊断准确率不高的问题,提出一种基于改进Adam优化算法的深度信念网络油井工况诊断方法.以二值化处理后的示功图作为深度信念网络输入,利用对比散度算法对网络进行无监督预训练,以获取较优的初始权值;在反向传播微调网络过程中,运用动量法预测梯度下降位置,更新梯度下降方向,并通过学习率自适应选择下降步长,避免梯度扩散降低模型训练效果.某采油平台油井上的仿真实验结果表明,基于改进Adam优化算法的深度信念网络对油井工况的识别准确率较高,能更好地满足油田生产实际需求.