摘要
文中提出了基于变压器振动噪声及BP神经网络的故障诊断方法,通过振动噪声检测系统获得变压器振动噪声信号,经FFT变换计算得到特征值,特征值作为输入量经训练好了的BP神经网络预测得到变压器故障类型。通过对6种变压器典型形态试验的诊断,验证了该方法的有效性。该方法充分利用变压器振动噪声信号,通过BP神经网络算法实现变压器带电故障诊断,大大提高了变压器故障诊断率,为变压器运维人员提供了一种带电巡检的有效途径。
- 单位
文中提出了基于变压器振动噪声及BP神经网络的故障诊断方法,通过振动噪声检测系统获得变压器振动噪声信号,经FFT变换计算得到特征值,特征值作为输入量经训练好了的BP神经网络预测得到变压器故障类型。通过对6种变压器典型形态试验的诊断,验证了该方法的有效性。该方法充分利用变压器振动噪声信号,通过BP神经网络算法实现变压器带电故障诊断,大大提高了变压器故障诊断率,为变压器运维人员提供了一种带电巡检的有效途径。