摘要

采用原始VMD方法对往复压缩机故障进行诊断时,往复压缩机易损部件的振动信号存在非平稳、非线性这一问题,为此,提出了一种使用天鹰算法(AO),以各分量样本熵的最小值作为适应度函数,对变分模态分解(VMD)进行优化分解的往复压缩机故障特征提取方法。首先,对往复压缩机滑动轴承的故障进行了分析,对其不同状态下的振动信号进行了分析处理;然后,先使用小波消噪对振动信号进行了消噪处理,再分别使用原始VMD和AO-VMD新型分解方法对其进行了处理,并得到了BLIMF分量;最后,计算两种分解方法中各分量的多尺度样本熵(MSE)值,对不同状态的多尺度样本熵值进行了对比分析,从而实现了对往复压缩机各类故障的诊断。研究结果表明:AO-VMD方法利用AO强大的快速搜索和开发能力后,故障分类性能明显优于原始VMD分解方法,各类故障信号多尺度样本熵值区分明显;其省时方面效果显著,基于遗传算法优化VMD方法分解耗时427 s,而AO-VMD方法仅需165 s,满足故障诊断分解方法要求。