摘要
随着互联网的发展,网络信息正飞速增长.社交网络如Facebook,Twitter,微博等相继出现,用户通过虚拟平台可以获得自己感兴趣的信息,找到爱好相投者.面对海量的内容信息,如何选择各自所需成了当下研究的话题,因此推荐系统应运而生.进一步地,如何更加个性化推荐信息也成为探讨热点.本文以微博社区为平台提出了一种基于微博的个性化社区推荐算法,通过对传统的Jaccrad相似度方法改进,从用户所关注博主以及所参与社区或话题两方面考虑用户之间相似性.继而通过改进的Page Rank算法筛选出具有影响力的对象作为待推荐集.与传统Jaccard和Page Rank算法相比,本算法在平均准确率的平均值MAP上分别提高了42.6%和34.3%.
-
单位天津市智能计算及软件新技术重点实验室; 天津理工大学