摘要

针对自适应增强回归阈值(adaptive boosting regression threshold, AdaBoost.RT)算法用于判断训练样本好坏的阈值为常数,不能自适应地对每个测试样本动态调整判断标准的问题,提出了一种动态自适应调整阈值的改进AdaBoost.RT算法。通过引入训练结果的均值与标准差构造奇异系数作为判断相对误差的阈值,实现算法训练计算过程中阈值的自适应调整,在提高预测精度的同时,可以减少选择算法参数带来的繁重工作量。采用4组经典测试函数构造不同规模的训练样本数据进行算法检验,实验结果表明,提出的自适应调整阈值算法可以有效利用测试样本之间的差异性,克服了大噪声数据带来的干扰,改进后的集成算法可以改善回归模型的预测效果,提高模型的泛化性能。利用IEEE PHM 2012数据集验证所提方法的有效性,并与极限学习机(extreme learning machine, ELM)和原始AdaBoost.RT算法进行对比分析。结果表明:采用所提方法获得的轴承寿命预测均方根误差降低了5.18%,决定系数提高了3.11%。