当前的一阶段回归网络可以通过多分支响应图的融合获得多级信息。然而,现有算法的响应图融合方法主要是基于简单的逐元素相加或相乘运算。基于此,提出一种新的跟踪模型,该模型集成了基于双线性卷积神经网络的新型响应图融合方法,可以获得响应图的位置关联和信息交互,利于更准确地跟踪目标物体。基于OTB2013基准数据库对本文算法进行测试,结果表明,与一流的跟踪算法相比,本文算法已经取得了比较有竞争力的结果。