摘要

自动转换开关(ATSE)是保证系统的连续供电的设备,对其进行健康监测和故障诊断对系统的稳定运行具有重要意义。为了实现对ATSE的非侵入式故障识别,本文提出一种基于电流信号变分模态分解(VMD)的特征提取和改进灰狼算法(IGWO)优化深度置信网络(DBN)相结合的故障诊断方法。该方法首先利用样本熵确定VMD分解次数并对故障电流进行分解;其次对分解后得到的本征模态函数进行小波包能量的提取,并利用IGWO对DBN网络结构参数进行优化;最后通过DBN将电流能量特征与ATSE的故障类型建立起映射关系从而完成最终的故障识别。所提IGWO采用了分段调节与非线性递减的衰减因子相结合的策略,以平衡算法全局搜索和局部搜索能力;并采用莱维飞行更新探狼的移动位置,来避免算法陷入早熟收敛。实验结果表明该算法不仅能显著提高前期对参数寻优的训练速度,后续泛化实验的故障分类准确率也有着98.78%的良好表现。

全文