摘要

目的:准确预测延性断裂需要确定材料参数(包括本构参数和延性断裂模型参数),以反映真实的材料响应。传统的材料参数标定方法往往依赖于试错法,需手动调整参数,直到相应的有限元模型得到与实验结果相匹配的材料力学响应。参数估计的过程通常是主观的。为了解决这一问题,本文将材料断裂参数辨识问题转化为优化问题,并引入粒子群优化(PSO)算法作为优化方法。创新点:1.基于粒子群优化算法,给出了自动识别钢材应变硬化参数的方法;2.建立了ASTM结构钢材Gurson-Tvergaard-Needleman(GTN)损伤模型的参数识别方法。方法:1.通过圆形缺口杆件的拉伸试验,以试验和有限元模拟的载荷-位移曲线差值为目标方程,采用PSO优化算法及参数自动校准程序,以最小化目标方程确定应变硬化准则和非耦合断裂模型的参数;2.基于文献调研的结果,确定GTN模型各参数的合理取值范围,以此确定PSO算法中参数的取值,从而能够高效、准确地确定GTN参数。结论:1. PSO算法能够准确地预测V形缺口试件的载荷-位移响应和延性断裂萌发,是一种识别延性断裂模型参数的有效算法;2. PSO在识别其他具有更多参数的断裂模型(如剪切修正GTN模型)方面具有很好的潜力,这些模型可以更准确地预测延性断裂。