摘要

为了快速准确地检测混沌背景中的微弱信号,提高网络泛化能力,文中利用改进教学优化算法优化贝叶斯回声状态网络的模型参数,提出了一种改进教学优化的混沌背景中微弱信号检测方法。通过建立混沌序列单步预测模型,分析预测误差的幅值,检测混沌背景中微弱瞬态信号和周期信号。对Lorenz系统和实测的海杂波数据进行实验研究,验证预测模型的有效性,结果表明,贝叶斯回声状态网络模型的预测结果比支持向量机和径向基神经网络模型的均方根误差降低了2个数量级,缩短了预测时间,提高了预测精度和预测效率,能快速有效地检测混沌背景中微弱信号,且具有更低的门限。

全文