摘要

k近邻(kNN)算法是缺失数据填补的常用算法,但由于需要逐个计算所有记录对之间的相似度,因此其填补耗时较高。为提高算法效率,提出结合局部敏感哈希(LSH)的k NN数据填补算法LSH-k NN。首先,对不存在缺失的完整记录进行局部敏感哈希,为之后查找近似最近邻提供索引;其次,针对枚举型、数值型以及混合型缺失数据分别提出对应的局部敏感哈希方法,对每一条待填补的不完整记录进行局部敏感哈希,按得到的哈希值找到与其疑似相似的候选记录;最后在候选记录中通过逐个计算相似度来找到其中相似程度最高的k条记录,并按照k NN算法对不完整记录进行填补。通过在4个真实数据集上的实验表明,结合局部敏感哈希的k NN填补算法LSH-k NN相对经典的k NN算法能够显著提高填补效率,并且保持准确性基本不变。

  • 单位
    中央军委装备发展部第六十三研究所; 解放军理工大学