摘要

为解决代码混淆算法有效性评估模型存在评价指标不全面、单一学习器泛化能力低的问题,提出一种融合自适应增强训练机制和Stacking算法的代码混淆算法有效性评估模型SDF-Stacking。构建一个包括强度、弹性、开销、隐蔽性4大特征的代码混淆有效性评价指标集合;在模型的基分类器训练阶段引入自适应增强训练机制,提高基分类器的预测精度和多样性;使用最大互信息算法做数据融合,增大元分类器训练数据信息量。实验结果表明,该模型在多个评价指标上均优于其它对比模型,准确率可达98.6%。

全文