摘要
对于供输弹系统早期故障中信号成分复杂,故障征兆难以识别的问题,提出了基于同步压缩变换(SST)时频图纹理特征的故障诊断方法。使用EEMD方法对供输弹系统振动信号进行预处理,对分解的分量进行相关系数运算,选取与原始信号相关系数大的前4层分量对信号进行重构,达到了一定的降噪效果;接着利用供输弹系统不同状态的信号通过同步压缩变换时频分析,得到反映不同运行状态的二维时频图像,并进行灰度化处理;利用灰度共生矩阵法与灰度梯度共生矩阵,对其进行纹理特征的提取,为与传统方法做对比,提取了信号经EEMD分解后,与原始信号相关系数大的前4层分量的能量百分比作为特征;使用基于核的模糊C均值聚类,对供输弹系统三种不同状态振动信号的图像纹理特征和能量百分比特征进行分类识别,并与模糊C均值聚类进行对比。实验结果表明,该方法能有效地对自动供输弹系统早期故障进行识别,且识别正确率达91.21%。
- 单位