摘要
为提高动力电池荷电状态(state of charge, SOC)估算准确性、稳定性,该文提出一种基于LSTM+UKF(long short term memory+unscented Kalman filter)融合的动力锂电池SOC估算方法。构建动力锂电池SOC估算窗口LSTM结构,通过动力电池电流、电压、温度并结合历史数据实时预测动力电池SOC训练网络;设计动力锂电池SOC估算UKF算法,提出融合策略。实验表明,研究窗口LSTM+UKF融合动力锂电池SOC估算方法 RMSE、MAX、MAE分别为1.13%、1.74%、0.39%,相较于加窗LSTM网络提升了动力锂电池SOC估算的准确性、稳定性。
- 单位