摘要
压缩感知突破奈奎斯特采样定律(NST),很大程度缓解了数据的获取和传输压力.近年来,随着深度学习迅速发展,深度神经网络技术在压缩感知领域的应用使压缩感知重构的精度和效率均得到有效提升,并引起学者们的广泛关注和研究.为了对现有的基于深度学习的压缩感知图像重构算法进行梳理归纳,首先,介绍压缩感知的基础数学知识以及两种极具代表性的传统压缩感知重构迭代优化算法:ISTA和ADMM;接着,详细讨论上述两种传统算法的深度网络展开框架以及对基准框架的改进技术:ISTA-Net++和ADMM-Net,并对SDA、ReconNet、DR2-Net等五种非传统算法展开的端到端的深度神经网络框架进行对比分析;然后,以峰值信噪比(PSNR)为评价指标,将代表性网络模型在自然图像数据集Train400和医学图像数据集MICCAI上的重构精度进行比较分析;最后,总结并展望深度学习技术在压缩感知重构领域的研究前景.
- 单位