摘要

目的研究数字图像中的去模糊问题,从受损的模糊图像中恢复出清晰图像。方法针对现有图像去模糊算法无法保留图像高频信息及容易产生振铃效应等问题,提出一种基于Y通道反卷积和卷积神经网络的两阶段自适应去模糊算法(SDYCNN)。在第1阶段,将数字图像转换至YUV颜色空间,根据图像无参考质量评价分数与模糊核尺寸之间的对应关系,在Y通道内自适应确定模糊核尺寸并进行反卷积增强;第2阶段将第1阶段中的反卷积增强作为预处理方式,通过4层卷积神经网络建立反卷积增强后的图像与清晰图像之间的映射关系,实现图像去模糊。结果轻微模糊图像在第1阶段便能够得到较好的去模糊效果,严重模糊图像经过第1阶段的反卷积增强,也有助于神经网络中特征的快速提取。结论实验结果表明,该算法不仅对于模糊图像具有良好的恢复效果,运算效率也有显著提升。