摘要

体视粒子图像测速(SPIV)中的空间标定精度对SPIV的测试结果精度有较大影响。为研究标定模型对输入误差的处理能力,定义了一个无量纲参数——误差衰减系数,来评判空间标定模型对误差的响应。在此基础上针对SPIV两相机空间标定的误差产生和传播特性,发展了一种基于神经网络的且具有联合标定能力的SPIV空间标定模型。使用仿真实验手段,证实了该神经网络模型在很大的参数空间内均具有对输入误差的抑制能力,而传统的多项式模型或小孔模型并不具备这一能力;此外,神经网络模型在高光学畸变情况下的表现也优于多项式模型及小孔模型。因此,神经网络具备替换传统空间标定模型的能力,有助于提高SPIV的测量精度。最后在实验中证实了神经网络标定模型的空间定位误差仅为传统模型的1/4。