摘要

针对互联网虚假评论大肆横行,在虚假评论研究领域却没有完全公开的中文数据集可供中文虚假评论检测研究的问题,提出了一种基于生成对抗网络的中文虚假评论数据生成模型.首先,对生成器生成的文字序列通过蒙特卡洛搜索获取一批样本;然后,采用强化学习方法将判别器、分类器和重构器的反馈化为奖励分数;最后,传回生成器,对生成器进行参数优化,以生成贴近真实世界的具有相应类标签属性及特征的虚假评论数据.以BLEU值为评估指标,实验结果表明,所提出的模型在本文数据集上取得了更好的BLEU值,具有较好的生成效果.