摘要

无监督行人重识别的挑战在于学习没有真实标签的行人的判别性特征。为增强网络对行人特征的表达能力,进一步从空间和通道维度上提取更丰富的特征信息,提出了一种基于多分支注意网络的行人重识别特征提取方法。该方法通过捕获空间维度和通道维度上不同分支之间的交互信息,能够学习到更具判别性的行人特征表示。此外,针对噪声标签会对聚类质心产生干扰的问题,提出了相似度学习策略(SLS)。该策略先计算每个聚类中样本特征之间的相似性,然后选取相似性分数最高的特征向量所对应的样本进行对比学习,有效地缓解了聚类噪声导致的累积训练误差。实验结果表明,和无监督场景下的自步对比学习方法(SPCL)相比,在Market-1501,DukeMTMC-reID和MSMT17等3个数据集上的rank-1准确度分别提升了4.6%,3.3%和16.3%,显著地提高了无监督行人重识别的检索精度。