摘要

针对红外光谱气体分析中建立数据模型需要标定大量样本的问题,提出一种基于正则理论的支持向量机的小样本机器学习方法,该方法能在获得模型参数全局最优点的同时保证训练误差为零,因而能较好地消除光谱间的交叉敏感现象,利用其良好的非线性映射能力对多组分红外光谱仪的试验结果表明,该方法可使光谱仪的交叉灵敏度下降约81倍。针对支持向量机(SVM)没有足够的理论支持的结构参数选取比较困难的问题,提出一种基于遗传算法和交叉检验相结合的遗传支持向量机(GA_SVM)算法,利用遗传算法的随机搜索特性求取SVM的最优结构参数,在20世代即可求取光谱仪的最小均方根误差(MSE)0.018,并且在算法的前数世代,系统的MS...