摘要

为解决长短期记忆神经网络模型超参数人为确定造成径流预测精度低的问题,将贝叶斯优化算法(BOA)应用于长短期记忆神经网络(LSTM)超参数的率定,构建BOA-LSTM径流预测模型,并研究分析模型超参数对预测精度的影响。采用呼兰河下游兰西水文站1959~2014年相关水文气象数据进行年径流预测及验证,并与麻雀搜索算法(SSA)优化超参数的LSTM神经网络模型(SSA-LSTM)及LSTM神经网络模型进行比较。结果表明,贝叶斯优化算法能更加准确高效地率定模型超参数。同时,研究提出的BOA-LSTM模型为年径流预测提供了一种有效的新方法。