摘要
为了解决车辆管控工作中出现的肇事车辆逃避交通监管的问题,对数据集处理方式和局部特征的车型分类算法进行研究。首先,以AlexNet网络为基础分析了各个网络结构对于输入图片的敏感程度,从网络层数和卷积核尺寸上进行网络优化得出IM-AlexNet网络。然后,使用数据增强方式处理后的自建数据集,训练IM-AlexNet分类模型网络。最后,在HOG-SVM、GoogleNet和VGG16三种模型上进行对比实验并分析。实验结果表明:IM-AlexNet网络在验证集上准确率达到96%左右,损失值低于0.2,训练速度达到3 s/step。在混淆矩阵中IM-AlexNet网络模型总体准确率达到69%,完成了局部特征对车型分类的实验,分类准确率大大提高。
-
单位长春理工大学; 长春工程学院