摘要

随着智能化交通的迅速发展,自动车牌识别技术不断提高.现有大多数车牌识别技术能较好识别单行车牌字符信息,但双行车牌识别准确率较低且支持中文双行车牌的识别算法更少.为了有效地将原本仅支持单行车牌识别的算法扩展到双行车牌识别,提出一种基于卷积神经网络(CNN)的双行车牌分割算法,首先利用CNN提取车牌图像特征;然后利用特征训练多标签分类模型,将双行车牌分割为2个单行车牌.文中还构建了一个包含20多万幅中国车牌图像的数据集.基于此数据集的实验结果表明,文中算法对双行车牌自动分割准确率较高,有效地提高了双行车牌识别准确率.