摘要
目标一维距离像在雷达目标识别领域中具有很高的研究价值,神经网络有很强的自适应能力,被广泛应用于目标识别领域中。通过研究分析,将学习向量量化(Learning Vector Quantization,LVQ)神经网络应用于雷达目标一维距离像识别。针对LVQ神经网络对初始连接权值敏感的问题和如何增强网络的分类识别性能,提出利用粒子群优化(Particle Swarm Optimization,PSO)算法对其进行优化。在此基础上提出了基于PSO-LVQ神经网络的雷达目标一维距离像识别新方法。通过3类飞机实测数据实验,验证了PSO算法优化LVQ神经网络初始连接权值的可行性和PSO-LVQ识别算法的有效性。