摘要
针对箱式仓储环境下的多自主移动机器人(AMR)调度问题,传统动态路径规划算法(TDP)有解算可行路径效率低、系统实时性较差的缺点。针对这一问题,文中以时间最优为目标建立强化学习算法(RL)模型,用于提高多AMR同时调度的路径规划求解速度。此外,结合深度学习(DL)算法的优点,采用深度强化学习算法(DRL)有效缩短高维度、复杂工况下RL算法模型训练的收敛时间。仿真对比了TDP、RL和DRL三种算法模型,验证了DRL方法的有效性。
-
单位中国电子科技集团公司第二研究所