摘要

复杂越野环境下的路径规划是实现智能车无人驾驶的一项关键技术。越野环境中存在多种影响车辆运动的障碍物、环境威胁和越野道路,传统路径规划方法以路径长度或时间最短为优化目标,难以在复杂越野环境中正确规划安全可行的车辆行驶路径。针对该问题,提出了基于势能场模型的概率图(AFP-PRM)算法,采用人工势能场算法对越野环境建模,评估车辆通行风险。使用概率图算法以优化节点间多维度通行代价为目标进行路径规划;考虑车辆动力学特性,用动态曲率平滑法对行车轨迹优化;应用AFP-PRM算法在模拟越野环境下进行路径规划仿真实验。仿真结果表明:AFP-PRM算法在路径规划过程中采用人工势能场算法,综合了越野环境中障碍物、环境威胁和道路条件的耦合作用;使用概率图算法,建立采样点之间的多维度通行代价评估矩阵;在复杂的越野道路条件下生成可行、安全、高效的通行路径,为智能车提供了一种多目标优化路径规划算法。

  • 单位
    清华大学; 汽车安全与节能国家重点实验室