摘要

熔铸装药过程中模具内部温度场分布及其变化规律对装药质量具有重要影响。建立基于B样条神经网络的水/油浴熔铸装药工艺瞬态温度场预测模型,通过数值仿真的正交试验,获得不同工艺条件下熔铸装药温度场演变的数据样本;利用B样条神经网络对数据样本进行训练,得到水/油浴工艺的温控参数与药柱内部温度场之间的关系模型,实现温度场及其凝固前沿演变的快速准确预测。所得成果为熔铸装药的温控参数优化和在线控制提供了高效预测方法,为解决熔铸装药智能化发展中的物理场预测问题提供了方法的借鉴。