摘要
针对现有的特征选择算法和分类算法在无线传感器网络(WSN)入侵检测系统中检测性能表现不佳、检测实时性差、模型复杂度高等问题,提出一种基于随机森林和深度森林算法的分布式WSN入侵检测模型.该模型首先对传感器节点流量数据进行预处理;然后将轻量级随机森林分类器部署到传感器节点和簇头节点,传感器节点和簇头节点合作对流量数据进行处理,并在基站上采用深度森林算法从大量流量数据中发现攻击行为;最后对WSN中的入侵行为进行实时分类入侵检测.使用无线传感器数据集WSN-DS和NSL-KDD数据集来评估所提出的模型性能.实验结果表明,该模型与现有的入侵检测模型相比,具有良好的检测性能,实时性较高,可避免模型过度拟合.
- 单位