摘要
针对苹果园中存在的果实相互重叠、枝叶干扰以及复杂背景等问题,本文提出Faster-RCNN一种改进的模型。该模型通过增强Mosaic数据,使得识别小物体目标果实能力得到提升,同时,对Faster-RCNN结构中的锚框进行优化,优化后的锚框能更好地检测出距离相机较远的目标果实,以及使用Soft NMS算法对密集区域的识别效果进一步得到改进。通过对300幅未参与识别的自然环境下的苹果图像进行验证,验证结果表明:召回率为91.44%,准确率为93.35%,F1值为92.38%,每幅图像的检测可在0.2 s内完成。改进后的算法鲁棒性得到增强,能够满足在自然环境下对苹果果实的识别工作。
- 单位