针对SURF算法特征描述复杂和匹配精确度不高的问题,提出先用SURF算法提取特征点,再计算其Harris响应值,剔除质量较差的特征点,使用BRIEF算法描述特征点,再用最近邻汉明距离匹配特征点.采用改进的K-means算法对数据分类,将数量较多的类里的匹配点作为正确匹配点保留.最后应用改进的RANSAC算法求变换矩阵.实验验证了算法性能.