摘要
脑机接口(Brain Computer Interface,BCI)系统能让那些有运动障碍的病人用脑信号与外界设备交互。稳态视觉诱发电位(Steady State Visual Evoked Potential,SSVEP)具有分析正确率高,不用训练等优点而倍受重视。如何高效地对SSVEP信号频率识别是SSVEP-BCI的关键问题,并关系到BCI的系统优劣。本文采用多变量同步指数与典型相关分析方法对SSVEP信号分类进行比较研究,探讨了两种方法在数据长度、导联数量、导联位置以及参考信号的谐波数量对SSVEP信号分类效果的影响。六位被试者参与实验采集数据,实验结果证实,在时间窗较小,数据长度较少的条件下,多变量同步指数方法较典型相关分析方法性能更优。而对于SSVEP信号分析来说,导联位置的准确性是影响频率分析算法的最根本因素。
- 单位