摘要
研究了基于前馈反向传播人工神经网络模型,结合Box-Behnken设计方法,采用厌氧氨氧化和部分硝化(SNAP)工艺、以上流式污泥床(upflow-sludge-bed, USB)反应器进行单级脱氮处理从含氮废水中去除NH+4和总氮。通过优化网络结构参数,开发神经网络;基于拟合优度标准,用Levenberg-Marquardt算法训练3层NH+4和总氮的去除。神经网络模型偏差较小(±2.1%),测定系数和分数方差较理想,协议指数(IA)分别为0.989~0.997、0.003~0.031和0.993~0.998。计算结果表明,优化后的神经网络结构可提高神经网络模型效率;利用人工神经网络模型对复杂的生物系统进行建模,可以提高去除效率、实施过程控制策略和实现优化性能;微生物群落的16S rRNA高通量法分析结果表明,库尼尼假丝酵母属的作用最显著(13.11%),其次是亚硝基单胞菌属(6.23%)和蛋白链球菌属(3.1%),这进一步说明USB的脱氮途径主要是部分硝化/氨氧化过程。
-
单位重庆机电职业技术学院