摘要
我国海岛众多且资源丰富,针对海岛地物复杂和难以采集训练样本的特点,在分析9种极化特征参数对海岛地物区分能力的基础上,提出了一种基于全极化SAR影像的海岛地物分类方法。该方法采用Freeman分解和Cloude-Pottier分解提取的极化特征与Shannon熵组成特征集,通过自编码器对原始特征进行学习重构,提取更具有可分性的深层特征,并利用主动学习选择最优价值的样本加入训练样本以提高分类器分类效果。通过对舟山群岛全极化SAR影像进行分类实验,结果表明:该方法能够对全极化SAR影像中的不同海岛地物进行有效区分,特别是引入Shannon熵后能明显提升海水、泥滩和沙滩的分类精度;基于主动深度学习的分类方法可以在样本有限的情况下得到比传统分类方法更好的分类结果。
-
单位河海大学; 北方信息控制研究院集团有限公司