摘要

知识感知推荐(KGR)领域普遍存在监督信号稀疏问题,为了解决这个问题,对比学习方法被越来越广泛地应用于KGR。但是,过去基于对比学习的KGR模型仍存在一些问题:(1)使用图卷积对所有邻居节点直接聚合,无法排除知识图谱中不必要邻居节点信息的干扰;(2)只关注全局视图的信息,忽略了局部特征,这会导致过平滑问题。为了解决以上问题,提出一种基于跨视图对比学习的知识感知推荐系统(KRSCCL)。KRSCCL使用关系图注意力网络构建包含用户、物品和实体节点的全局视图;使用轻量级图卷积网络构建包含用户和物品节点的局部视图,强调局部特征,有效地缓解过平滑问题。最后,在构建的两个视图的图内和图间节点对之间进行对比学习,以充分提取KG信号,优化用户和物品表示。论文方法在三个不同领域的公开数据集上进行了大量实验,实验结果表明:关系图注意力网络可以有效排除复杂网络聚合时的噪声问题;引入局部视图可以优化节点表示生成,缓解过平滑问题;KRSCCL模型在这三个数据集上都表现良好,在电影领域数据集Movielens-1M上,其推荐的F1分数较最强基线提升2.0%;在音乐领域数据集Last.FM上,其推荐的F1分数较最强基线提升0.3%;在书籍领域数据集Book-crossing上,其推荐的F1分数较最强基线提升5.1%。证明了论文方法的有效性。

  • 单位
    中国电子科技集团公司第三十研究所; 四川大学

全文