摘要

为有效解决配电变压器故障诊断中面临的数据特征人工提取、机器学习调参困难等问题,提出了一种基于堆栈自编码器(SAE)和随机森林(RF)组合的配电变压器故障诊断方法。建立SAE配电变压器故障特征自动挖掘模型,利用大量的无标签数据对SAE模型中的每一个自编码器进行逐层无监督训练,通过贝叶斯优化算法自动选择模型的最优参数;通过有标签数据对模型参数进行有监督细调,挖掘出能够代表各种故障本质属性的特征量;创建一个RF分类器对故障类型进行辨识,调参过程同样实现参数的自动寻优。试验结果表明,所提方法对配电变压器故障诊断准确率达到96.67%,显著优于单独使用SAE和RF的分类结果。