摘要
为提高大规模平台上可扩展矩阵乘法的并行计算效率,提出一种并行分层可扩展矩阵乘法的递阶优化方法。首先,在可扩展矩阵乘法算法(SMM)算法枢轴行和枢轴列通信研究基础上,利用分层方式在更高等级上对网格进行矩形群划分,实现矩阵乘法的二维计算向三维计算转变,并设计对应的集群内通信和集群间通信过程,实现SMM乘法的递阶并行优化(HSMM);其次,对所提HSMM算法进行理论分析,分情况对其通信成本进行分析和预测,推导出最佳计算成本的集群数选取方式;最后,通过在Grid5000和BlueGene/P测试平台实验,显示所提算法在执行时间和通信时间指标上均要优于对比算法,验证了所提算法有效性和理论分析的正确性。
- 单位