摘要

针对电厂目前普遍采用PI-PI串级控制器调节锅炉主蒸汽温度系统,不能有效克服惯性、时滞和参数时变等问题的影响,本文提出了一种理想GPC (Generalized predictive control)-PI串级控制器.首先,该理想串级控制器不仅能抑制一次和二次扰动,而且外环GPC通过对主蒸汽温度的多步预测,并结合滚动优化技术能有效克服主蒸汽温度系统的惯性和时滞问题.另外,针对主蒸汽温度系统参数时变的特性,该理想控制器采用了T-S (Takagi-Sugeno)型模糊神经网络(Fuzzy neural network, FNN)作为主蒸汽温度模型,该模型能够通过反馈校正技术实时更新模型参数.同时,为了改善主蒸汽温度系统动态响应品质和稳定性,对外环GPC中的权重因子进行了模糊自校正设计,通过理论分析和对比仿真验证了该理想GPC-PI串级控制器优于权重因子固定的GPC-PI和PI-PI串级控制器.最后,考虑到直接将电厂集散控制系统(Distributed control system, DCS)中的PI-PI串级控制器升级为理想GPC-PI串级控制器存在安全以及风险责任等问题,故将电厂的传统PI-PI串级控制器升级成外挂的GPC-PI-PI串级控制器,既改善了锅炉主蒸汽温度的控制效果又规避了风险责任,实际应用验证了该方法的有效性.

  • 单位
    流程工业综合自动化国家重点实验室; 东北大学; 自动化学院

全文