摘要
提高智能采棉机效率的一个重要途径是实现单个、重叠和遮挡棉花的识别,避免误采摘和漏采摘。针对不同形态棉花的识别,常规的特征提取方法难以达到令人满意的结果,因而采用基于迁移学习的棉花识别方法和基于迁移模型的特征提取与极限学习机(extreme learning machine,ELM)相结合的方法进行棉花识别研究。首先更改AlexNet、GoogleNet、ResNet-50模型分类层和设置相关参数,用训练好的迁移模型对棉花验证集识别,然后利用训练好的迁移模型进行棉花数据集特征提取,再用训练集的特征训练ELM模型,统计不同隐含层神经元个数的ELM模型对棉花的识别准确率。AlexNet、GoogleNet、ResNet-50迁移模型识别率依次为92.03%、93.19%、93.68%;使用特征提取再与ELM结合的方法,准确率比对应迁移模型分别提高了1.97、1.34、1.55百分点。结果表明,迁移模型对小样本棉花识别也有较高准确率,基于特征提取与ELM相结合的方法可进一步提高准确率。
-
单位机械传动国家重点实验室; 重庆大学