基于深度学习的目标检测算法在自动驾驶领域的比重日益上升。文章首先介绍了基于深度学习的卷积神经网络和目标检测算法的发展过程,其中简要介绍了几种经典卷积神经网络模型的结构特点;然后详细介绍了以R-CNN系列为代表的基于候选框的two-stage算法和以YOLO系列为代表的基于回归的one-stage算法,简要介绍了这两大类算法各自的结构和优缺点,最后总结了目标检测算法在自动驾驶场景中应用时比较常用的几种优化方法和研究趋势。