摘要

大数据时代,必然涌现出各种各样的海量数据,而推荐系统是帮助人们选择数据的有效手段之一。目前,以协同过滤算法为代表的传统推荐算法已经无法满足人们的个性化选择的需求。本文利用深度神经网络构建基于深度学习的推荐模型,抽取用户和电影的特征,并且设计一个多层神经网络将用户和电影特征进行深度交互,从而挖掘用户和电影的深层交互关系,得出用户的偏好。通过相关Spark、Flink、Tensorflow等技术实现对深度学习电影推荐系统的构建和部署。研发出了个性化电影推荐系统。