摘要

为探讨基于无人机RGB影像实现对小麦叶面积指数(leaf area index, LAI)和产量估算的可行性,设置不同生态点、品种和氮素处理的小麦田间试验,应用大疆精灵4 Pro无人机获取小麦拔节期、抽穗期、扬花期和灌浆期4个主要生育时期的RGB高时空分辨率影像,并同测定小麦LAI。采用相关性分析筛选出不同生育时期对LAI敏感的光谱与纹理特征集,并借助随机森林(random forest, RF)、偏最小二乘回归法(partial least squares regression, PLSR)、BP神经网络(back propagation neural network, BPNN)和支持向量机(support vector machine, SVM)分析方法,筛选出小麦不同生育时期最优的LAI估测模型。基于不同生育时期的光谱与纹理特征以及时期特征集,进一步建立产量预测模型,并在不同生态点验证叶面积估算模型与产量预测模型的普适性。结果表明,基于RF的LAI估测模型的验证精度最高,4个生育时期的均方根误差(root mean square error, RMSE)分别为2.26、1.44、1.73和1.02。基于RF的产量预测模型验证效果也最优,RMSE为1.17 t·hm-2。由此说明基于无人机RGB影像和RF算法,建立LAI和产量估测模型,可实现小麦长势实时监测和产量预测。