基于GA优化RBF神经网络的机器人轨迹规划

作者:胡晓伟*; 安立雄; 王宪伦
来源:计算技术与自动化, 2020, 39(01): 18-22.
DOI:10.16339/j.cnki.jsjsyzdh.202001004

摘要

针对机器人在不确定环境下末端执行器运动轨迹的准确性及平稳性问题,采用基于遗传算法(GA)优化径向基函数(RBF)神经网络的轨迹规划方法对Kinova Mico2机器人进行轨迹规划研究。介绍了机器人的相关参数及坐标系、建立了D-H矩阵和运动学模型。提取机器人实际抓取物品的直线轨迹并等分插补,用GA优化并实时在线更新RBF神经网络的权值,以更优的权值参数建立新的RBF网络。研究结果表明:相比优化前,基于GA优化RBF的规划轨迹逼近误差小且平滑稳定,仿真结果较为稳定,轨迹规划的可行性满足机器人实际抓取工作的需要。