基于国内外现有变压器老化影响因素、绕组热点温度的预测方法及变压器绝缘状态评估的研究基础,以变压器顶层油温为研究对象,利用灰色关联分析法分析变压器监测量与顶层油温的相关性,采用Adam算法优化的人工神经网络对热点温度进行预测。该预测方法速度快、精度高,能在变压器负载状态和散热设备动态变化明显的工作情况下实现顶层油温的高精度预测。